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An explicit upwind-difference predictor-corrector integration
scheme is applied to the time-domain Maxwell equations of electro-
rmagnetics using a cell-centered finite-volume implementation. The
characteristic-based numerical flux and material-based limiters
{which are scalar coefficients of the extended second-order correc-
tion terms in the corrector step} are reformulated for a material
interface that contains a thin electric and-or thin magnetic conduct-
ing sheet. The integration scheme requires the material-based limit-
ers to correctly model wave reflection and transmission at a material
interface and te enable the numerical selution to be advanced at
the maximum timestep prescribed by linear stability analysis. The
effect of material-based limiters is demonstrated for one-dimen-
sional wave propagation in isotropic nonhomogeneous materials
with and without thin conducting sheets. ® 1995 Academic Press, Inc.

INTRODUCTION

An important objective of computational electromagnetics
(CEM) is the ability to accurately predict the propagation of
time-varying electromagnetic (EM) fields in constant-property
homogeneous materials (free-space) and nonhomogeneous ma-
terials with regions of spatially varying electric and magnetic
properties, which may contain thin electric and magnetic con-
ducting sheets.

The time-accurate numerical methods developed in computa-
tional fluid dynamics (CFD) for solution of the Euler equations
can be applied to solve the time-domain Maxwell equations of
electromagnetics, both total-field and scattered-field formula-
tions. With the CFD-based finite-volume (FV-TD) methods,
the conservation-law volume-integral form of the time-domain
Maxwell equations is implemented. For an upwind characteris-
tic-based difference scheme, the electric and magnetic field
vectors are integrated concurrently at the same grid-coordinate
location in space and time. A distinction is made between the
algorithm that is used to time integrate cell-averaged quantities
(the electric and magnetic fields and material properties) and
the scheme that is used to construct the numerical flux (the
tangential vector component of the electric and magnetic fields)
at the cell interface from this same cell-centered information.

A spatially structured geometric discretization of the compu-
tational domain defines the system of curvilinear grid-coordi-
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nates that conform to specified computational boundaries, such
that regions with uniform material properties are bounded by
constant grid-coordinate surfaces. With a cell-centered finite-
volume implementation, the spatial variation of material proper-
ties is represented by cell-averaged values, which means that
the interface between contiguous cells s a material interface
across which the electric and magnetic material properties may
be discontinuous. As shown in Fig. 1, the material interface
can contain a thin electric and-or a thin magnetic conducting
sheet that is a sub-grid material property coincident with a
constant grid-coordinate surface. With no thin conducting sheet,
the tangential vector component of the total electric and mag-
netic fields is continuous at the material interface. The tangential
vector component of the total magnetic/electric field is discon-
tinuous across a thin electric/magnetic conducting sheet, re-
spectively.

For the numerical integration scheme, the first-order numeri-
cal flux and second-order extrapolation across consecutive cells
(to obtain better than first-order spatial accuracy) must account
for the effect on wave propagation of the change in material
impedance across the cell interface. This must be done implic-
itly by construction within the numerical flux and explicitly
in the predictor—corrector scheme by the addition of scalar
coefficients, called material-based limiters, on the second-order
terms in the corrector step.

For time-domain solution of the Maxwell equations, Shankar
et al. [1-5] implemented the upwind-difference form of the
Lax—Wendroff two-step integration scheme, which is the sec-
ond-order predictor—corrector scheme that was developed by
Warming and Beam [6}. The numerical flux was derived for
the propagation of electromagnetic waves in linear isotropic
nonhomogeneous materials with a spatially varying material
impedance and thin electric conducting sheets. In terms of cell-
averaged quantities and properties of the conducting sheet, the
numerical flux was defined by a characteristic-based integration
that is the exact solution of a one-dimensional Riemann prob-
lem, as prescribed by Lax [7] and Osher and Solomon {8]. For
grid-aligned wave propagation in a region of constant material
impedance and no thin conducting sheets, this method satisfies
the perfect-shift condition at timesteps for which CFL = 1 and
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FIG. 1. Computational space-time network used for the CFD-based up-
wind-difference scheme in one dimension.

CFL = 2 in one dimension, which represents all integer CFL
numbers for which the method is stable (the CFL number is
the product of the wave speed and time step divided by the
cell volume, in one dimension). With the constraint that the
cell volume divided by the wave speed is equal to a constant,
then the one-dimensional perfect-shift condition ensures that
the integration scheme can reproduce the exact solution, with
no numerically induced dissipation or dispersion.

In the research by Bishop and Anderson [9], the following
enhancements to the upwind predictor—corrector scheme were
developed for solution in nonhomogeneous materials, with a
spatially varying material impedance and no thin conducting
sheets:

—Material-based limiters, which are coefficients of the ex-
tended second-order correction terms, are required for the inte-
gration scheme to satisfy the perfect-shift condition in nonho-
mogeneous materials and, hence, produce the correct wave
reflection and transmission at a material interface. These limit-
ers are simply the one-dimensional transmission coefficients
for wave propagation in the respective positive and negative
grid-coordinate directions. When material-based limiters are
not implemented, numerically induced oscillations in the elec-
tric and magnetic fields are generated at each cell interface
with a discontinuity in the material impedance. The magnitude
and frequency of the oscillations are significantly greater at
timestep with CFL = 2 than at CFL = 1. The intensity of these
oscillations increases as the number of points per wavelength
is decreased, and as the discontinuity in the material impedance
increases. With material-based limiters, the numerical solution
can be obtained at the maximum CFL number prescribed by
lingar stability analysis, and a smaller number of points per
wavelength is required to obtain accurate results.

—At a computational boundary, the extended second-order
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correction terms exterior to the domain can be defined exactly
with respect to the second-order correction terms on the interior.
This produces the correct wave propagation across the boundary
for waves that exit the computational domain. The result is
considerably simplified when material-based limiters are imple-
mented. '

In this analysis, with the Maxwell equations writien in total-
field form, the upwind characteristic-based numerical flux and
associated material-based limiters are reformulated to include
a thin electric conducting sheet and a thin magnetic conducting
sheet at the cell interface. The one-dimensional reftection and
transmission coefficients are derived, and the effect of a thin
conducting sheet on electromagnetic wave propagation is pre-
sented. Numerical results in one dimension are compared to
exact analytic solutions to demonstrate the effect that material-
based limiters have on numerical wave propagation in nonho-
mogeneous isotropic materials.

GOVERNING EQUATIONS

Analytic Form

The time-domain Maxwell equations of classical electromag-
netics [10] constitute a system of linear hyperbolic partial-
differential equations that can be written in the nondimensional
vector form

aD

— —VUYxH-=-
C-VXH=-] M)
9B

— +VXE= K, )

where the vector E is the electric field intensity and the vector
H is the magnetic field intensity. D = £ E is the electric
displacement field vector, and B = uH is the magnetic induc-
tion field vector. The vector J = ¢ E is the electric field current
density, and the vector K = o* H is the equivalent magnetic
field current density, both of which act to dissipate the energy
contained within the electric and magnetic fields. The electric
and magnetic properties of the material are defined by the
electric permittivity & and the magnetic permeability u (which
are nondimensionalized by constant free-space values), and the
electric conductivity ¢ and the equivalent magnetic conductiv-
ity o* (which are nondimensionalized by the free-space mate-
rial admittance and impedance per unit reference length, respec-
tively).

In this analysis, the material properties are assigned scalar
values associated with a linear isotropic material, defined to be
independent of the frequency content of the electric and mag-
netic fields. There are no volumetric EM charge distributions
or EM conduction currents, so that J = 0 and K = 0, and the
electric and magnetic fields satisfy the divergence conditions
V-D=0and V-B = 0. However, a thin electric conducting
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sheet and a thin magnetic conducting sheet can exist, in which
the product of the EM conductivity and sheet thickness is
nonzero.

Numericel Form

A CFD-based FV-TD implementation requires that the Max-
well equations (1) and (2} be writien as a systemn of conserva-
tion-law statements in Cartesian coordinates. With the chain
rule of partial differentiation for the transformation from physi-
cal to computational coordinate space, the Maxwell equations
can be written in nonorthogonal curvilinear grid-coordinates in
the spatially symmetric form

@ — 2 Q@ =0
ar T ok
B,  oF (3)
0 d
ar 2,(“ ok 0
with the geometric conservation law (GCL) constraint
IN*
—=10 4
ok 4)

where 7 = ¢ is the temporal coordinate, and k = £, n, {is the
generalizeg curvilinear spatial coordinate, taken in order. D=
VD and B = V B, in which the metric V is the differential
cell volume. The generalized flux vector is defined as

H =N'XH
- (3)
FE=N'XE

in which the metric N¥ is the differential area vector normatl to
a k-constant grid-coordinate surface, as the superscript denotes.
The electric and magnetic field flux is the vector component
of the electric and magnetic fields which is tangent to the grid-
coordinate surface. With a finite-volume implementation, V is
the cell volume, and N* is the cell-face area vector which
satisfies the discrete form of the discretization constraint (4),
by construction.

MATERIAL COEFFICIENTS

Wave Propogation

With uniform material properties and no EM conduction
currents, the symmetry between the electric and magnetic fields
allows the Maxwell equations (1) and (2} to be written as an
uncoupled system of homogeneous second-order wave equa-
tions; hence, a time-varying electromagnetic field propagates
with the wave speed

c=1/Vepu ()]
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which is strictly a function of the EM material properties and
not the instantaneous EM field strengths. For the propagation
of a one-dimensional plane wave in the positive/negative (X)
grid-coordinate direction, the magnetic and electric field vectors
are mutually defined as

—E = = Z(N* x H)

. (7
+H=2Y(N*XE)
with E - H = 0, where Z = u ¢ is the material impedance,
and ¥ = g ¢ is the material admittance, which are reciprocal
statements, in that Z¥ = 1.

An incident wave can be transmitted (TRNS) and reflected
(REFL) at the interface between materials with different electro-
magnetic properties. The effect of a thin conducting sheet is
to instantaneously dissipate energy of the incident wave (inde-
pendent of the frequency content of the electric and magnetic
fields) which is to be distributed to the transmitted and reflected
waves. The thin conducting sheet does not induce any phase
shift in the transmitted and reflected waves with respect to the
incident wave. The reflected and transmitted waves have the
same frequency content as the incident wave, so that any change
in wave length is in direct proportion to the change in wave
speed across the interface.

To describe the physical significance of implementing mate-
rial-based limiters in a numerical upwind-difference scheme,
the one-dimensional transmission and reflection coefficients
are derived for grid-aligned wave propagation in the positive/
negative () grid-coordinate direction across a material inter-
face designated at (m * 1/2). The material interface contains
a thin conducting sheet and divides two regions of constant
material properties, such that

—For propagation of the incident wave in the (+) grid-
coordinate direction, the interface is at (m + 1/2): the material
state to the left is designated at (m) and to the right at (m +
1), with all properties of the thin conducting sheet designated
at {(m + 1/2); the EM field state to the left is designated at
{m + 1/3) and to the right at (m + 2/3);

—For propagation of the incident wave in the (—) grid-
coordinate direction, the interface is at (m — 1/2); the material
state to the right is designated at (m) and to the left at (m —
1), with all properties of the thin conducting sheet designated
at (m — 1/2); the EM field state to the right is designated at
{m — 1/3) and to the left at (m — 2/3),

where left/right is defined with respect to the positive grid-
coordinate direction. By definition, a variable with a non-
integer subscript or no subscript denotes a quantity to be
evaluated at the {m + 1/2) interface, unless noted otherwise
for clarity.

The total field at (m = 1/3) and (m % 2/3) can be written
in terms of the incident wave, and the transmitted and reflected
waves, For the magnetic field
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ﬁfn:us =+ (ﬁfmﬁ_ + ﬁ’fNC)

ﬁfnzzfa = +(I:'I%RNS)
L - - 3
Nt % H;:m = i(EkREFL - E%\'C} Y,
N ﬁfuizfa =¥ (El'i'RNs) ) o

and for the electric field
E;:Hs =+ (E’ﬁﬁﬂ_ + E?Nc)
]::fn:m = +(E!(FRNS)
9

N X By = F(Hign — Hive) Z,

Nt X B oy = = (Ains) Zonos

The tangential component of the magnetic/electric field can be
written in terms of the product of the material admittance/
impedance and the electric/magnetic field, from Eq. (7), respec-
tively.

Conditions At The Material Interface

With no thin conducting sheet at the material interface, the
Maxwell equations require that the tangential vector compo-
nents of the total electric and magnetic fields be continuous
across the interface. The tangential vector components of the
total fields are discontinuous across a thin conducting sheet [2,
10]. A thin electric conducting sheet produces a jump in the
tangential magnetic field proportional o the electric field cur-
rent in the sheet. A thin magnetic conducting sheet produces
a jump in the tangential electric field proportional to the mag-
netic field current in the sheet. The conditions across the mate-
rial interface at (m * 1/2) can be written in the general form

[[ﬁk]]milfz =—(o d)&k X Eﬁ\ifclilz

- . ~ (10)
[EDnz12 = +(o*d) N X HYS,
which is equivalent to
N X ], = + (o d) ERS, an

Nk X [[Ek]]m:uz = —(o*d) ﬁﬂ?{z-

The jump conditions are defined with respect to the positive
grid-coordinate direction as

ﬂﬁk]]m:uz = t(ﬁfn:m - H. ) (12)
[[Ek]]m:uz = i(i’fn:m - Eﬁiua)-

The quantity (o d) is the electric conductivity and the quantity
(o*d) is the equivalent magnetic conductivity, with (¢ d) = 0
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and (o*d) = 0 by definition, where d is the thickness of each
sheet. The electric field in the thin electric conducting sheet
and the magnetic field in the thin magnetic conducting sheet
can be written as a weighted average of the respective values
at (m =+ 1/3) and (m =% 2/3); consequently,

AVG  — ok = gk
EmIIIZ - Em:lﬂ i '9@2 [[E ]]mtll?.

= i Eﬁtlra + 9l ﬁiﬁ,tm
(13)

HAYG

m>1{2

= ﬁfuiwa * oy [[ﬁkl]m:uz

= sl ﬁfn:m + oy I‘:Ifn:m,
where AT + 7 = 1, with AT = 0 and siF = 0, in that

~951|+ = 54-[,
‘ﬂl_ = ‘ﬂZ;

A =,
dy =d,

at(m+ %)

at(m—%

The coefficients s¢, and s, are weight factors defined with
respect to the positive grid-coordinate direction, which intro-
duces an additional directional dependence with respect to the
wave propagation direction. In this analysis, the coefficients
A, and s, are simple scalar constants, but there is no restriction
in defining these terms to be a more complex function of some
material property. To substantiate the formulation of Eq. (13):

—When (o d) # 0 and (o*d) = 0, the tangential component
of the total electric field is continuous and the tangential compo-
nent of the total magnetic field is discontinuous across the
electric conducting sheet; hence, the electric field in the con-
ducting sheet is evaluated at (s *= 1/3) or equivalently at
(m £ 2/3), and results are independent of &, and ;.

—When (o d) = 0 and (g*d) # 0, the tangential component
of the total magnetic field is continuous and the tangential
component of the total electric field is discontinuous across the
magnetic conducting sheet; hence, the magnetic field in the
conducting sheet is evaluated at (m = 1/3) or equivalently at
(m = 2/3), and results are independent of &, and ;.

—When (o d) # 0 and (o*d) # 0, then the tangential
components of the electric and magnetic fields are discontinu-
ous, and results are strongly dependent on the weight factors
A, and d,. If the electric conducting sheet is left/right of the
interface at {m * 1/3) and the magnetic conducting sheet is
right/left of the interface at (m £ 2/3), then

TAVG . Tok
E.fn =Eqan

JAVG . — ¥
Hm:l,’l - Hmtlf}

which is obtained for sdif = | and #87 = 0. If the magnetic
conducting sheet is left/right of the interface at (m + 1/3) and
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the electric conducting sheet is right/left of the interface at (m
+ 2/3), then

LAVG  — Tk
EnSi: = Enson

HAYS, = Hia i
which is obtained for sdi = 0 and &7 = 1. An intermediate
state between these extremes is obtained for &7 and 7 not
equal to zero or one.

TRNS/REFL and LOSS Coefficients

The refiection/transmission coefficient is the ratio of the am-
plitude of the reflected/transmitted wave to the- amplitude of
the incident wave. These coefficients are derived by substituting
the total magnetic and electric fields (8) and (9) at (m = 1/3)
and {m =* 2/3) into the interface conditions (10) and (11). With
these operations, the reflection and transmission coefficients
become

(Z: ) - A Z, — B]Ithl
REFL/m=i/2 A”Zm + B“Zm:I
(14)
Zins) _ 2A,.7Z,
RS2 = A
for the magnetic field and
(Yie) =BnYm“A11Ym:|
T B Y+ AT ey
(15)

Vishms i = = e
( TRNS)meI B]|YM+A||Ymi|

for the electric field. The coefficients A and B are defined
respectively by Eq. (23) and Eq. (25), when the numerical flux
is derived. These terms are equal to one with zero conductivity,
so that the reflection and transmission coefficients for a material
interface with no conducting sheet are recovered.

The total energy within the incident wave is not conserved
across a thin conducting sheet. A measure of the energy in the
respective magnetic and electric fields that is absorbed by the
conducting sheet can be written as

+ * — J— x
ZTRNS - ZREFL =1 ZLGSS

(16)
Yiwws — Yiern = 1 — Yioss
where the loss (LOSS) coefficients are defined as
2(An — Ap) Z,
7= gy = ————=7
Fosshueir AnZy, + BnZu=
(7
oy, = 2B Bty
LOSS m=112 B[]Ym+A1|Ym11
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such that Z; g5 = 0 and Yo = 0. With no thin conducting
sheet, then Zinss = 0 and Yo = 0 which means the total
energy of the incident wave is conserved.

Properties of the Conducting Sheet

The material properties that are required to produce no re-
flection of the incident wave can be derived by setting the
numerator of the reflection coefficients (14) and (15) equal to
zero, which produces a quadratic equation to be solved for
i or di . For homogeneous constant material properties, this
expression can be written as

(i — AN o d)(o*d) = Lo d) — Y(o*d).

An equivalent result is produced when the energy loss is defined
to be equally distributed between the electric and magnetic
fields. For equal electric and magnetic conductivity and free-
space conditions Z = ¥, then i = 1/2.

To derive the material properties required to produce no
transmission of the incident wave, the numerator of the trans-
mission coefficients (14) and {135) are set equal to zero; hence,
with nonzero conductivity

AT A (o d)o*d) = 1

Consequently, the incident wave is totally absorbed by the
conducting sheet when (o d) = 2 and (g%*d) = 2.

NUMERICAL FLUX

The numerical flux prescribed by Shankar er al. [1-5] is
defined by a characteristic-based integration that represents the
exact solution of a one-dimensional Riemann problem, in which
the respective left and right states at the cell interface are cell-
averaged quantities: the electric and magnetic vector fields and
material properties.

At interface (m = 1/2), a path of integration is constructed
in the space—time plane to connect the left/right state at cell
{m) to the right/left state at cell (m = 1) at time level (). The
path is divided into contigucus sub-paths that connect the left
and right states to the sub-states at (m * 1/3) and (m * 2/3)
at time level (n + 1/2). The sub-path from (m) to (m = 3) is
along the (*) wave-type characteristic across the (¥) wave-
fields. The sub-path from (m = 2/3) to (m = 1} is along the
(+) wave-type characteristic across the (*) wave-fields. The
sub-path along the stream-type characteristic connects the sub-
states at (m £ 1/3) and (m * 2/3). For a linear system of
equations, the wave speed is constant along each sub-path;
hence, the numerical flux is the sub-state which divides the
negative and positive wave-fields. The sub-state at (m £ 1/3)
is the flux at the (m % 1/2) interface for cell (m), and the sub-
state at (m = 2/3) is the flux at the (m = 1/2) interface for
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cell m = 1). The flux is continuous across the interface when
the sub-states at (m £ 1/3) and (m * 2/3) are equivalent [7, 8].

From a one-dimensional characteristic-based analysis of the
Maxwell equations, the cell-averaged material properties and
Riemann invariants are constant along the {£) wave-type char-
acteristics (eigenvalue). For the electric and magnetic fields,
integration of the compatibility equations from (m) to (in = 1/
3) can be written as

(H)es — (FHZ), = 0
N ~ (18)
(rE:)mle - ("E:)m =0

with the Riemann invariants of the (=) wave-type characteristic
defined in vector form as

(0%, = +2Z,H, = N x B
) o (19)
(rE*), = —Y,Ef + N X S,

An important property of the Riemann invariants is the ability
to_recognize the direction of wave propagation, such that
(rH*) = 0 and (*E*) = 0 for the propagation of a one-dimen-
sional plane wave in the negative/positive () grid-coordinate
direction. To define the electric and magnetic field sub-states,
from Eqg. (18):

Along the (*) wave-type characteristic from cell (1) to the
sub-state at (m = 1/3), then

(rﬁ:)m = (rﬁi)m-:lﬂ

= +ZH5os = AP | L

. . 20)
(B, = (B e (20;

=~V Ebes = N X Hyepps.

Along the (+) wave-type characteristic from cell (m X 1)
to the sub-state at (m = 2/3), then

(rﬁ:)mtl = (rﬁz)mimﬁ

= 4 Zp Wiy 7 REX Bl

("E;)m:l - (rﬁ':)m:ﬂl (2D

— ok — Nt w
= Yo B ¥ N X HS .

The numerical flux is the simultaneous solution of the character-
istic equations (20) and (21) and interface conditions {10) and
(11). With no thin conducting sheet, the flux is continuous
between the sub-states at (m £ 1/3) and (m * 2/3). With a
thin electric/magnetic conducting sheet, the magnetic/electric
field flux is discontinuous between (m * 1/3) and (m * 2/3).
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Solving for H* and N¥ X EX the numerical flux for the
magnetic field can be written as

= A“(rﬁ:)m + Al2(rﬁ;)mtl

an:us =+
Apdp t Biyfmsy
. . (22)
~ , Ay(rH®),, + All(rH:)m:I
Hm:213 = '
BynZ, + ApZon
where A\ Z, + B\Z,., = BpZ, + ApZ,.,, and
Ay = Ayt (od) [€bf (o%d) + Z,.1]
Ap =1 — iy (o d)(o*d)
(23)

Ay =1 — A7 A (o dYo*d)
Ay = Ay + (od) [di (o*d) + Z,].

Solving for X and N¢ x B, the numerical flux for the electric
field can be written as

Bu(rE®), + By(rE™),.

Eﬁ:m =
BllYm +AllYmt|
- - (24)
=, _ Buy(rE™), + Bo(tE7) e
Eyon = »
ApY, + Byp¥ae
where BV, + ApYo. = ApY, + Byut,., and -
By, =B, + (or*d)[sd; (od) + ¥,-1]
By =1 — df A5 (o*dod)
(25)

By =1 — 5 A7 (e d
By =By + (o%d) [di (od) + ¥,].

The numerical flux (22} and (24) is a nonlocal quantity that
represents the exchange of cell-averaged information berween
(m) and (m * 1) across the material interface. The material
coefficients (23) and (25) are a function of the sheet conductivity
at (m = 1/2) and the material impedance and admittance at
(m) and (m = 1). When the sheet conductivity is zero, the
numerical flux for an interface with no thin conducting sheet
is recovered.

INTEGRATION ALGORITHM

The explicit predictor-corrector scheme developed by
Warming and Beam [6] is used to integrate the Maxwell equa-
tions [1-5], with the material-based limiters derived by Bishop
and Anderson [9] included as coefficients on the extended
second-order correction terms in the corrector step. New mate-
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rial-based limiters are presented to account for the thin electric
and thin magnetic conducting sheets in the numerical flux.

Predictor:
(DY = (D), + % (AH),
(26)
BT ~ @B, — 7 4.
Corrector:
Dy = Dy, + - 5 A T T IARYT + (AFD))
+ %% }kj [(X* dH* Y, 1]
%i_; WZ* dH Y — (27 dH Y]
+ %% 217 AR = (2 AR Y
w2 S 10t B sl o
By, = B, — -2-~A—]~c Taby + (AE)y)
-5 K )
%ﬁ_ DA By = (¥ B ]
_ i ‘%7( g [V dE Yo — (V- dE Vo)
- % %I 310t 4 Yavial,

in which Ak = | and At = timestep, by definition. The subscript
(m) is the index associated with the spatial curvilinear grid-
coordinate, and the superscript (n) is the index associated with
the temporal coordinate. An integer subscript denotes cell-
centroid information, and a noninteger subscript denotes cell-
interface information. The extended second-order correction
terms for the magunetic and electric field flux are defined as

(dﬁ:)mtlﬂ = F(Nbsin X H, — ﬁﬁ:'”)
; (28)
(dE ) pe1r =

+(Nm+112 X E, +m)

The terms Z* and Y* and X* are the material-based limiters,
To state that these limiters are not implemented is equivalent
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to setting Z* = ¥*= = | and X~ = 0 for all variations of material
properties, which recovers the original integration scheme.

For cell (m) with interface at (m + 1/2) and {m — 1/2),
evaluating the spatial derivatives for each computational coordi-
nate is equivalent to integrating the numerical flux over the
bounding surface. The flux residual can be written in standard
form as

(Aﬁ)m = 2 [ﬁ]:rx+113 - ﬁfn"h’?’]
L (29)
(AE), = ¥ [Ebyis — ELopsl,
k
or, equivalently, as
(AH), = > [(dH Youip + (H ) 2]
L . (30)
(AE), = 2, [(dE Vi + (dE* -1,
&

so that the predictor—corrector sequence can be written strictly
in terms of the second-order corrections (28). The standard
subscript (m * 1/2) has been replaced with subscript (m + 1/
3) to indicate that the numerical flux (22) and (24) may be
discontinuous at the cell interface.

The predictor step alone is a first-order accurate explicit
scheme, which is stable for CFL = 1. The predictor—corrector
sequence, together with the extended second-order correction
terms, makes the scheme second-order accurate in space and
time. The predictor—corrector scheme is stable for CFL = 2.
The CFL number at cell-m is defined in multiple dimensions as

CFL = ( AT) z (A,,,-Hfz + Am 112) (31)

Ak

where A, 2 is the area magnitude of the cell face at (in + 1/2).

MATERIAL-BASED LIMITERS

For one-dimensional wave propagation, the numerical and
exact analytic solutions will be equivalent when the integration
schemne satisfies the perfect-shift condition (no numerically in-
duced dissipation or dispersion}. For all variations of the mate-
rial properties, the predictor scheme satisfies the perfect-shift
condition at CFL = 1, and the predictor—corrector scheme
satisfies perfect-shift condition at CFL = 1 and CFL = 2
provided the material-based limiters are implemented.

The material-based limiters are derived by forcing the pre-
dictor-corrector scheme to satisfy the perfect-shift condition at
CFL = 1 and CFL = 2 for all variations of the material
properties at (s = 1/2) and (m = 3/2) between consecutive
cells. The required algebraic manipulations are considerably



122

simplified by substituting into the numerical flux of corrector
step the identities

(rﬁ:);'? = (rﬁi)j;, + o Zm(dﬁ:)ﬁ:uz

. - - (32)
PES = (GE*), + o Y dE®Yz 0,

where & = 2 (CFL). For one-dimensional wave propagation
the predictor step alone is exactly equivalent to the predictor—
corrector sequence at CFL = 1; and similarly, implementing
the predictor step alone for two time steps at CFL = 1 is exactly
equivalent to implementing the predictor—corrector sequence
for one time step at CFL = 2 [9].

With a thin electric conducting sheet and-or a thin magnetic
conducting sheet at the material interface (m = 1/2), the mate-
rial-based limiters can be written as

ZAIZZM

2Ny =
e = o Bz

= (Zfens)n=112

2ByY,

VYo = o
B = B Y ¥ At

{(33)

= (YT:R.\‘S)mi'lfz

204 — A2,

XEein = o
K min = BrZom,

= (Zioss)m=1n2

2(311 — B,)Y,

(Xidoz1r ByY, t AyYas

= (Yiosshm=1n (34)
which are functions of the material properties and not the instan-
taneous electric or magnetic field strengths. The material-based
limiters at (m ¥ 1/2) are the transmission coefficients (14) and
(15) and loss coefficients (17) for wave propagation in the
positive/negative (*) grid-coordinate direction across the mate-
rial interface at (yn * 1/72). Similarly, the material-based limiters
at (m = 3/2) are the transmission coefficients for wave propaga-
tion in the positive/megative (%) grid-coordinate direction
across the material interface at (m & 1/2); in other words, only
information at {m  3/2) that is transmitied across the (im ¥
1/2) interface can be used in the integration of the electric and
magnetic fields at cell (sn). Because of this physical significance,
the implementation is valid for noninteger CFL numbers and
wave propagation in multiple dimensions.

The implementation of material-based limiters enables the
predictor—corrector sequence to properly account for the multi-
ple reflections and energy loss that occur in the integration of
the electric and magnetic fields from time level (#) to (n + 1).
From a more general perspective, the spatial extrapolation
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across consecutive cells that is used to obtain better than first-
order spatial accuracy must account for the wave refiection and
transmission due to the change in material impedance across the
cell interface. For the predictor—corrector integration scheme, in
addition to the characteristic-based numerical flux, this was
done explicitly by the addition of scalar coefficients, called
material-based limiters, on the second-order correction terms.

BOUNDARY CONDITIONS

The computational domain is of finite extent so that boundary
conditions must be specified at the domain boundaries. For cell
(m) on a max-k boundary, the numericat flux at (m + 1/2) and
the second-order corrections at (m + 3/2) are required; for cell
{(m) on a min-k boundary, the numerical flux at (m — 1/2) and
the second-order corrections at {im — 3/2) are required. The
subscript BC is used to denote the boundary at (m * 1/2) for
cell (m).

For an electromagnetic wave that originates from the domain
interior to pass through the computational boundary without
undue reflection, the Riemann invariant associated with ail
incoming waves is set equal to zero; hence,

(rH ),y = 0
(35)

which is exact for one-dimensional wave motion normal to the
boundary. This condition can be substituted into the numerical
flux (22} and (24} for the electric and magnetic fields; hence,

- An("ﬁi)m
B.=+—"—7>--—7"—
N ANZ, t BuZ,e
. (36)
= B (rE®),
EBC = T < 2 <
B]]Ym + A]IYmil

The wmaterial properties designated at (m = 1) represent an
impedance boundary condition with respect to the material
properties at (m) and the properties of the thin conducting sheet
on the boundary. With the appropriate specification of material
properties at (m) and (m = 1) and properties of the conducting
sheet at (m = 1/2), the boundary condition flux (36) can be
applied to a computational boundary which is farfield or at the
surface of a perfect electric-conducting body.

Given the numerical flux (36} at the computational boundary,
the second-order corrections (28) at (m * 3/2) can be defined
with the same approach used to derive the material-based timit-
ers (33). With the implementation of material-based limiters,
this produces

(dﬁ;)m:l'l =0
_ (37
(AE ) yz3, = 0;

otherwise,
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(di:l:)milfi = ‘_(Z§EFL)mih'2 (dﬁi)m:m

.. X . (38)
(dE )o32 = — (Yrer)mo 1l dE= )pz102.-

The (F) extended second-order correction terms exterior to the
domain are defined exactly in terms of the (%) correction terms
on the domain interior, with the reflection coefficients (14) and
{15) for propagation of the magnetic and electric fields in the
(*) grid-coordinate direction {9].

NUMERICAL RESULTS

To clearly demonstrate the effect of implementing material-
based limiters, wave propagation in one dimension across a
single material interface is studied. The grid spacing satisfies
the constraint that the cell volume divided by the wave speed
is equal to one (constant), The computational domain is divided
into two regions of constant material properties, with an inter-
face at x = 0 that may confain a thin conducting sheet: region-
I for x << 0 is free-space, and region-II for x > 0 is to be
defined. The incident wave is a second-derivative continuous
pulse defined at time zero as

n=3
E= z @, cos (2mnXx)

n=0

(39}

for 0.0 = X = 1.0, such that

@ = +0.43750
a, = ~0.53125
a, = +0.06250
ay = +0.03125.

The pulse is contained within 26 cells, with the highest fre-
quency contained within approximately 8 cells. At time zero,
the center of the pulse is located approximately 10.5 pulse
widths left of the interface. This enables a reasonably fair
comparison of the distortions introduced by the predictor—
corrector scheme as the result of the inherent dispersion and
dissipation at noninteger CFL numbers for the specified number
of integration steps, and not implementing material-based lmit-
ers in regions with a spatially varying material impedance.
Because it is important to advance the solution at the maximum
timestep to minimize CPU requirements, only CFL numbers
in the range 1.0 = CFL = 2.0 are implemented.

Numerical results are presented for the following three funda-
mental material interface configurations: (1) a material interface
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with no conducting sheet, shown in Fig. 2 and Fig. 3; (2) a
thin electric and magnetic conducting sheet with no material
interface, shown Fig. 4; and (3) a material interface with a thin
electric and magnetic conducting sheet, shown in Fig. 5. Each
figure contains solutions for two CFL numbers and two sets of
material propertics to demonstrate the effect of the timestep
and magnitude of the impedance discontinuity on the solution
error. Each plot contains the incident pulse traveling in the
positive coordinate direction, and the transmitted and reflected
pulses generated by the change in material impedance (an arrow
indicates the direction of propagation). The incident pulse and
reflected pulse are shown at the same spatial position, approxi-
mately one pulse width from the interface, after traveling 9.5
and 11,5 pulse widths, respectively. Only the electric field is
shown at different time levels, since the magnetic field is the
electric field divided by the material impedance. A solid line
denotes the solution when material-based limiters are imple-
mented {which is equivalent to the exact solution at integer
CFL numbers}, and a dashed line denotes the solution computed
without material-based limiters. The plotied error in the re-
flected and transmitted waves is the difference between the
numerical solutions with and without material-based limiters.

Figure 2 presents soltutions (a) at CFL. = 1.0, 2.0 with ¢ =
36 and w = 1, and (b) at CFL = 1.5, 2.0 with ¢ = 49 and
g = 1, The error at CFL. = 1.0 and CFL = 1.5 is negligible
for this set of material properties, even when compared to the
distortion at CFL, = 1.5 due to the numerical dispersion. At
CFL = 2.0, the reflected and transmitted waves are distorted
by the oscillations generated at the cell interface when material-
based limiters are not implemented. The relative magnitude of
these oscillations is greater than the distortion introduced by
the dispersion at noninteger CFL numbers, and increases dra-
matically as the impedance is increased. A greater material
impedance will produce oscillations that completely overpower
the reflected and transmitted pulses so that they cannot be
distinguished. Solutions for a larger discontinuity in the material
impedance can only be obtained when CFL = 2.0, Figure 3
presents solutions (a) at CFL = 1.5, 1.9 withe = 8land u = 1,
and (b) at CFL. = 1.5, 1.8 with £ = 196 and g = 1, which
exhibit the same behavior described previously. These results
indicated that the implementation of material-based limiters is
required only for geometries with relatively large discontinu-
ities in the material impedance for CFL numbers near the maxi-
mum prescribed by linear stability analysis,

Results for an isclated electric/magnetic conducting sheet
in free-space are presented in Fig. 4 for (a) (o ) = 2.0 and
(o*dy = 1.0 with &, = 04, and (b} (¢ d) = 2.0 and
(o*d) = 6.0 with &, = 0.8. Results for a material in-
terface with an electric/magnetic conducting sheet are
presented in Fig. 5 in which ¢ = 12 and g = 1.0 for (a)
(g d) = 20 and (o*d) = 10 with &, = 0.5, and (b)
(o d) = 4.0 and {o*d) = 2.0 with &, = 0.5, The speci-
fic material properties have been chosen so that the trans-
mission coefficient is positive in (a) and negative in (b) for
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these geometries. The specific material properties of the con-
ducting sheet cause a large percentage of the incident wave to
be absorbed. Results are shown for CFL = 1.0 and CFL =
2.0, to demonstrate that the wave oscillations/distortions stil}
exist. Solution for noninteger CFL number can be computed
that are similar to those shown in Fig. 2 and Fig. 3.

The results shown in Fig. 2 through Fig. 5 clearly demonstrate
that without material-based limiters the reflected and transmit-
ted waves are distorted as the result of numerically induced
oscillations generated at the cell interface. The magnitude of
the oscillations are greater than the numerical dispersion for a
relatively large discontinuity in the material impedance, for
timesteps approaching the maximum CFL number that main-
tains stability. These oscillations are the direct result of not
properly accounting for the wave reflection and transmission
on the second-order correction terms in the predictor-correction
sequence. The intensity of the oscillations is greater at CFL =
2 than at CFL. = |, and it increases in magnitude as the disconti-
nuity in the material impedance is increased and the number
of points per wavelength are decreased. These oscillations can
be suppressed by using alarger number of points per wavelength
to accurately compute the wave propagation in a body with
dielectric material or thin conducting coatings. With material-
based limiters, the numerical solution can be obtained at the
maximum CFL number prescribed by linear stability analysis,
and a smalier number of points per wavelength is required to
obtain accurate results.

CONCLUDING REMARKS

With the total-field form of the Maxwell equations, the no-
merical flux and material-based limiters have been reformulated
to include a thin electric concluding sheet and a thin magnetic
conducting sheet at the cell interface. Numerical results have
confirmed that the upwind predictor—corrector scheme satisfies
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the one-dimensional perfect-shift condition when material-
based limiters are implemented. The material-based limiters
correct a deficiency in the upwind predictor—corrector scheme
for the solution of the Maxwell equations in nonhomogeneous
materials with a spatially varying material impedance and-or
thin conducting sheets. The effect of material-based limiters is
to improve the solution quality for the reflection and transmis-
ston of time-varying electromagnetic fields in nonhomogeneous
materials that have relatively large discontinuities in the mate-
rial impedance. The implementation can reduce the required
number of points per wavelength and allow solutions to be
obtained at the maximum timestep prescribed by linear stability
analysis. These benefits become increasingly important for
large realistic configurations in two and three dimensions, given
the speed and memory limitations of current computers.
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